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Life history strategies of the great apes 

 山極壽一 

 京都大学大学院理学研究科	
  

 
	
 Primates show slow life history traits, such 

as small litter size, long gestation, long lactation, 

and long life span, in spite of striking contrasts in 

habitats, diet, mobility and range size between them 

(Harvey et al., 1987; Read & Harvey, 1989; Ross, 

1998). Recent arguments have proposed determi-

nant factors of slow life history in primates, such as 

large brain size (Allman et al., 1993; Martin, 1996), 

high risk of juvenile mortality (Janson & van 

Schaik, 1993) and arboreal life style (Eisenberg, 

1981; Martin, 1995), but no single factor seem to 

fully explain it (Harvey & Purvis, 1999; van Schaik 

& Deaner, 2002).  

Ecological factors may influence the life his-

tory traits of primates in various ways (Kappeler et 

al., 2003). The low growth rate of primates may be 

caused by a negative association between mortality 

rates and growth rates, and the juveniles’ vulner-

ability to food shortage and predation may shape 

their life history traits (Janson & van Schaik, 1993). 

Primates may be adapted to the low mortality rates 

prevalent in their ancestral habitat (tropical forests), 

since other arboreal mammals such as bats (Jones & 

MacLarnon, 2001) also have low mortality rates. 

Primates living in the more unpredictable habitats 

have higher birth rates and earlier age at first re-

production (Ross, 1998). The apes that are strictly 

distributed in and around the tropical forests have 

slow life history traits, while old world monkeys 

living in variable habitats have relatively rapid life 

history traits. Large intra-specific variations are also 

found in some life history traits. Female vervet 

monkeys may respond to limited access to food re-

sources by delaying reproduction (Cheney et al., 

1988). Female Japanese macaques and savanna ba-

boons with high ranks tend to mature earlier than 

females with low ranks (Altmann et al., 1988; 

Gouzoules et al., 1982; Takahata et al., 1999). The-

se observations may suggest that life history traits 

of primates may have evolved as a species-specific 

strategy as well as the immediate responses to en-

vironment changes.  

Social structure and social behavior are also 

important for life history traits. Among mammals, 

primates have a unique social feature in that the two 

sexes live together even outside the breeding season. 

This may result in diversity of social structure and 

may characterize the fast-slow continuum in rela-

tion to social systems. Female gregariousness, so-

cial relationships, or alloparental care of dependent 

infants may also affect life history traits such as 

postnatal growth rate, weaning age and inter-birth 

interval (Fairbanks, 1990; Stanford, 1992). Male 

reproductive strategies may constitute a strong se-

lective force on life history traits. Infanticide by 

males promotes prolonged male-female association 

(van Schaik, 2000), complex male-infant relation-

ships (Paul et al., 2000), patterns of female move-

ments between groups (Steenbeck, 2000; 

Yamagiwa & Kahekwa, 2001), and female repro-

ductive biology (Watts, 2000; van Noordwijk & 

van Schaik, 2000). Recent findings show large 

variations in social structure and behavior between 

species and within species (Barton et al., 1996; 
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Henzi & Barrett, 2003; Doran et al., 2002; 

Yamagiwa et al., 2003). Life history traits are also 

easy to change, relatively independently, via selec-

tion (Kappeler et al., 2003). However, it is still un-

clear how such social variation is linked with life 

history variation. 

The social structures of the great apes are 

highly differentiated. Both male and female 

orangutans usually live alone and overlap their 

home range partially with neighboring individuals 

of the same sex (Galdikas, 1984; Delgado & van 

Schaik, 2000; van Schaik, 1999). A male’s large 

range includes multiple small ranges of females, 

although “unflanged male,” mature but with unde-

veloped external adult features, occasionally roam 

widely (van Schaik et al., 2004). Gorillas form a 

cohesive group consisting of a mature male and 

several females with their offspring (Schaller, 1963; 

Jones & Sabater Pi, 1971; Fossey, 1983; Yamagiwa, 

1983). They do not show territoriality, and their 

home ranges extensively overlap with those of 

neighboring groups (Schaller, 1963; Yamagiwa et 

al., 1996; Parnell, 2002). Chimpanzees form a large 

group including multiple males and females, but 

they frequently change partners to associate with 

and range in small parties (Goodall, 1968; Nishida, 

1968; Boesch & Boesch-Achermann, 2000). In-

ter-group relationships are antagonistic and are 

sometimes characterized by overt aggression, even 

including killing individuals of neighboring groups 

during encounters (Goodall et al., 1979; Nishida et 

al., 1985; Watts et al., 2006).  

Despite such sharp differences in social 

structure, females of the great apes have the com-

mon feature of starting reproduction after leaving 

their natal groups. A comparison of life history 

parameters in female great apes indicates that or-

angutans have the slowest life history.  

 
Table 1. Comparison of female reproductive 

features among great apes 

 

Both species of orangutans (Pongo abelii and P. 

pygmaeus) show the highest age at first reproduc-

tion (15.4 and 15.7 years on average, respectively) 

and the longest inter-birth interval (9.3 and 7.7 

years on average, respectively) among the apes. 

Gorillas (Gorilla beringei beringei and G.b. grau-

eri) show the lowest age at first reproduction (10.1 

and 10.6 years, respectively) and the shortest in-

ter-birth interval (3.9 and 4.6 years, respectively). 

Both species of chimpanzees are intermediate be-

tween orangutans and gorillas. The previous studies 

argued that ecological factors, such as frugivorous 

diet and arboreal lifestyle, promoted slow life his-

tory among extant apes (Doran et al., 2002; van 

Schaik & Deaner, 2002; Wich et al., 2004). How-

ever, recent studies reported frugivorous diet and 

arboreal foraging of western gorillas (Remis, 1997; 

Rogers et al., 2004). Although the more frugivorous 

orangutans (Pongo abelii) at Ketambe show slower 

life history than the less frugivorous orangutans 

(Pongo pygmaeus) at Tanjung Putting, the more 

frugivorous bonobos (Pan paniscus) show rela-

tively faster life history than the less frugivorous 

chimpanzees (Pan troglodytes).  

Social factors, rather than ecological factors, 

may influence the life history parameters of female 

apes. Among them, their solitary nature and male 

reproductive tactics may have great influences on 

the fast-slow continuum in the life history of female 
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apes. Female orangutans, who usually spend a soli-

tary life, show the slowest life history. Maturing 

females need to establish their own home range and 

relationships with reproductive mates after separa-

tion from their mothers. They need a longer time to 

attain these tasks than female chimpanzees and go-

rillas, who transfer into other groups immediately 

after emigration. Solitary travel for weeks or 

months by female chimpanzees or gorillas has 

rarely been seen (Wrangham, 1979; Nishida, 1979; 

Goodall, 1986; Boesch & Boesch-Achermann, 

2000; Watts, 2003; Stokes et al., 2003; Yamagiwa 

et al., 2003). Female chimpanzees and gorillas may 

easily find mates for reproduction in the group they 

join and thus may not need to establish their own 

ranging areas. Instead, they need to establish social 

relationships with unrelated conspecifics within the 

new group. Immigrant females usually get harassed 

by resident females in both chimpanzees and goril-

las (Goodall, 1986; Idani, 1991; Furuichi, 1997; 

Watts, 1991, 1994; Harcourt & Stewart, 2007). Fe-

male gorillas get support from the leading males, 

who frequently intervene in conflicts among fe-

males (Watts, 1997; Harcourt & Stewart, 2007). 

The leading male monopolizes most of the copula-

tions with fertile females and takes intensive care of 

the offspring before and after weaning (Fossey, 

1979; Fletcher, 2001; Stewart, 2001). These social 

features may facilitate weaning at the earlier age, 

shorter inter-birth interval, and female reproduction 

at an earlier age for gorillas than for chimpanzees. 

By contrast, female chimpanzees and bonobos 

copulate with multiple males and take care of in-

fants by themselves (Tutin, 1979; Goodall, 1986; 

Kano, 1992). Female chimpanzees tend to associate 

or interact with other adults less frequently than 

males, and mothers with dependent infants rarely 

join males (Wrangham, 1979; Nishida, 1979; 

Boesch & Boesch-Achermann, 2000). Immigrant 

female bonobos first establish affiliative relation-

ships with resident females through socio-sexual 

behavior (Idani, 1991; Kano, 1992; Furuichi, 1997; 

Hohmann et al., 1999). Although group life may 

facilitate female chimpanzees in starting or resum-

ing reproduction earlier than do female orangutans, 

more complex social relationships within a group 

and unassisted caretaking may prevent them from 

having a fast life history.  

 
Figure 1. Costs of female transfer and fast-slow 

continuum of life history 

 

In summary, male mating tactics may influence the 

life history of the great apes in different ways. Fe-

male dispersal and independent reproduction from 

related conspecifics may enable them to form vari-

ous social structures and flexible life history traits 

according to male mating strategies. Ecological 

factors basically shape the gregariousness of fe-

males in female-dispersal species, but they can 

choose from a wide variety of feeding strategies, 

from individual dispersal to moving in cohesive 

groups. Males also take various mating tactics ac-

cording to female movement and association pat-

terns, which in turn also vary with male associa-

tions and mating strategies. Although the influences 

of these ecological and social factors on life history 

of great apes are different between genera, between 
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species, and between populations, the solitary 

nature may urge females to choose a slower life 

history, while stable associations between males 

and females may promote a faster life history. Fru-

givorous orangutans and chimpanzees may suffer 

more costs of female dispersal through decreased 

foraging efficiency than folivorous gorillas, and 

chimpanzees with fission-fusion grouping may suf-

fer more social stress than gorillas in highly cohe-

sive groups. Such differences may generally shape 

the fast-slow continuum of life history in fe-

male-dispersal primate species. 
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Life-history inference In the early hominins Australopithecus and Paranthropus 
  

            Jay Kelley 

Institute of Human Origins, Arizona State University 

 

For primates as a whole, age at M1 emergence has 

been demonstrated to be a reliable proxy for the 

general pace of life history. New ages at M1 emer-

gence for several wild great ape individuals 

(~3.7-4.6 years) show a particularly close corre-

spondence to key life-history attributes related to 

lifetime reproductive output, more so than body 

mass or adult cranial capacity. If these new ages 

approximate the respective species means, then age 

at M1 emergence would appear to be a highly reli-

able predictor of life history within Hominidae, in-

cluding fossil members of the clade. 

Estimated ages at M1 emergence were calcu-

lated for four species of the early hominin genera 

Australopithecus and Paranthropus using data on 

adult average cranial capacity, as well as previously 

estimated ages at death in several infant  and juve-

nile individuals that died during or soon after M1 

eruption (Bromage & Dean, 1985; Dean, 1987; 

Dean et al., 1993; Lacruz et al., 1995). The latter 

were based partly on the preserved growth records 

in the teeth of these individuals combined with data 

on tooth formation in extant apes.  

Species Specimen M1 eruption stage 

Estimated 

age 

at death (yrs) 

Estimated age at M1 

emergence (yrs)a 

Australopithecus 

afarensis 
LH 2 Recently into occlusion 3.25  2.9 

Australopithecus 

africanus 
Sts 24 

Recently into occlusion with slight 

wear 
3.30  2.9 

Australopithecus 

africanus 
Taung 1 

Recently into occlusion with very 

slight wear 
3.73-3.93 3.3-3.5 

Paranthropus 

robustus 
SK 62 

Cusp tips just below alveolar mar-

gin 
3.35-3.48 3.8-3.9 

Paranthropus 

robustus 
SK 63 In occlusion with wear facets 3.4-3.7 2.8-3.1 

Paranthropus 

boisei 
KNM-ER 1820 

Mesial cusp tips above level of 

dP4 cervix 
2.5-3.1 2.7-3.3 

a Based on age at death estimates, adjusted for stage of eruption. 

Table 1. Estimated ages at death and M1 emergence in six early hominin individuals 

 

The two methods generally produced different 

results. Predicted M1 emergence ages based on cra-

nial capacity were in the range of 3.7-3.8 years us-

ing either an all-anthropoid or gorilla model, or 

4.3-4.4 years using a chimpanzee model. Those 

based on ages at death in the early hominin indi-
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viduals had an overall range (lowest minimum to 

highest maximum estimates for all individuals) of 

2.7-3.9 years, with a range of species means of ap-

proximately 3.0-3.4 years (Table 1).  

Four of the six individuals, however, had mean 

estimates of only about 3.0 years. Most interesting, 

unless early hominins are modeled as chimpanzees 

in the age at M1 emergence/cranial capacity regres-

sion, the ranges from both methods are below, or 

barely overlap, the range of M1 emergence ages of 

the free-living great ape individuals (3.7-4.6 years). 

What stands out in these results is that most of 

the estimates of age at M1 emergence derived from 

ages at death in the early hominin individuals are so 

much earlier than the expected ages based on crani-

al capacity, and, for the most part, also so much 

earlier than those determined for the extant great 

ape individuals. However, in extant great apes and 

humans, cranial capacity is neither a particularly 

precise nor accurate predictor of age at M1 emer-

gence, nor is it strongly concordant with the timing 

of key life-history attributes.  Equally important is 

that age of M1 emergence does appear to be a very 

reliable predictor of life history in extant hominids.  

The critical issue, therefore, is the accuracy of 

the age at death estimates in the fossil hominins, 

which largely determines the accuracy of the esti-

mates of age at M1 emergence. If they are reasona-

bly accurate, then the life histories of Australopith-

ecus and Paranthropus species would likely have 

been considerably faster than in any of the extant 

great apes. Alternatively, there could have been se-

lection for accelerated dental development and 

therefore early M1 emergence, as in indriids for 

example compared to other lemurs, perhaps associ-

ated with relatively early weaning. Again as in in-

driids, other life history parameters might have been 

relatively slower and more or less commensurate 

with cranial capacities, which were nearly identical 

to those of gorillas. Finally, it is possible that the 

ages at death in most or all of the early hominin 

juveniles have been systematically underestimated, 

with consequent underestimation of ages at M1 

emergence. An examination of molar crown and 

root formation in early hominins, extant great apes 

and humans suggests that this may indeed be the 

case unless root growth in the early hominins was 

more rapid even than in Gorilla, which, perhaps 

along with Pongo, has the fastest root growth 

among extant great apes and humans. Estimates of 

M1 crown formation times in Australopithecus and 

Paranthropus mostly fall in the range of about 

2.4-2.7 years. Even with root extension rates as fast 

as in Gorilla, M1 emergence any earlier than about 

3.5-3.7 years of age would therefore be highly un-

likely. If the ages at death in the early hominin in-

dividuals have in fact been underestimated, then 

their life histories would likely have been slower 

than presently appears to be the case and probably 

more in line with those of the extant great apes, as 

suggested by their cranial capacities. 

Until recently, none of the above alternatives 

could be dismissed and each could be argued with 

reference to growth and ecology in extant primates. 

Means now exist, however, to determine – without 

recourse to the partially destructive methods other-

wise needed to reveal all the dental growth infor-

mation required to calculate reliable and precise 

ages at death – if the ages at death in the early 

hominins examined here have been underestimated. 

Together, confocal microscopy and X-ray synchro-

tron microtomography can faithfully render many 

of the details of dental incremental growth that pre-

viously had to be estimated for specimens that 

could not be sectioned. A project has now been ini-

tiated by researchers in France and the U.S. to re-

examine ages at death in a number of fossil 

hominins using these techniques. 
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